Glycoside hydrolase family 9 processive endoglucanase from Clostridium phytofermentans: heterologous expression, characterization, and synergy with family 48 cellobiohydrolase.

نویسندگان

  • Xiao-Zhou Zhang
  • Noppadon Sathitsuksanoh
  • Y-H P Zhang
چکیده

The glycoside hydrolase family 9 cellulase (Cel9) from Clostridium phytofermentans has a multi-modular structure and is essential for cellulose hydrolysis. In order to facilitate production and purification of Cel9, recombinant Cel9 was functionally expressed in Escherichia coli. Cel9 exhibited maximum activity at pH 6.5 and 65 degrees C on carboxymethyl cellulose in a 10-min reaction period. The hydrolysis products on regenerated amorphous cellulose (RAC) were cellotetraose (a major product), cellotriose, cellobiose and glucose, and 71-80% of the reducing sugars produced by Cel9 were in soluble form, suggesting that Cel9 was a processive endoglucanase. The highest synergy between C. phytofermentans Cel9 and C. phytofermentans cellobiohydrolase Cel48 on Avicel was about 1.8 at a ratio of about 1:5. Cel9 alone was sufficient to solublize filter paper while Cel48 was not; however, it enhanced the solublization process along with Cel9 synergistically. This study provided useful information for understanding of the cellulose hydrolysis mechanism of this cellulolytic bacterium with potential industrial importance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Targeted gene inactivation in Clostridium phytofermentans shows that cellulose degradation requires the family 9 hydrolase Cphy3367

Summary Microbial cellulose degradation is a central part of the global carbon cycle and has great potential for the development of inexpensive, carbon-neutral biofuels from non-food crops. Clostridium phytofermentans has a repertoire of 108 putative glycoside hydrolases to break down cellulose and hemicellulose into sugars, which this organism then ferments primarily to ethanol. An understandi...

متن کامل

Reassembly and co-crystallization of a family 9 processive endoglucanase from its component parts: structural and functional significance of the intermodular linker

Non-cellulosomal processive endoglucanase 9I (Cel9I) from Clostridium thermocellum is a modular protein, consisting of a family-9 glycoside hydrolase (GH9) catalytic module and two family-3 carbohydrate-binding modules (CBM3c and CBM3b), separated by linker regions. GH9 does not show cellulase activity when expressed without CBM3c and CBM3b and the presence of the CBM3c was previously shown to ...

متن کامل

Characterization of an endoglucanase belonging to a new subfamily of glycoside hydrolase family 45 of the basidiomycete Phanerochaete chrysosporium.

The wood decay fungus Phanerochaete chrysosporium has served as a model system for the study of lignocellulose conversions, but aspects of its cellulolytic system remain uncertain. Here, we report identifying the gene that encodes the glycoside hydrolase (GH) family 45 endoglucanase (EG) from the fungus, cloning the cDNA, determining its heterologous expression in the methylotrophic yeast Pichi...

متن کامل

Deletion of Caldicellulosiruptor bescii CelA reveals its crucial role in the deconstruction of lignocellulosic biomass

BACKGROUND Members of the bacterial genus Caldicellulosiruptor are the most thermophilic cellulolytic organisms described to date, and have the ability to grow on lignocellulosic biomass without conventional pretreatment. Different species vary in their abilities to degrade cellulose, and the presence of CelA, a bifunctional glycoside hydrolase that contains a Family 48 and a Family 9 catalytic...

متن کامل

Binding site dynamics and aromatic-carbohydrate interactions in processive and non-processive family 7 glycoside hydrolases.

In nature, processive and non-processive cellulase enzymes deconstruct cellulose to soluble sugars. From structural studies, the consensus is that processive cellulases exhibit tunnels lined with aromatic and polar residues, whereas non-processive cellulases exhibit open clefts with fewer ligand contacts. To gain additional insight into the differences between processive and non-processive cell...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioresource technology

دوره 101 14  شماره 

صفحات  -

تاریخ انتشار 2010